A pyridoxal 5′-phosphate-dependent Mannich cyclase (2024)

  • Percudani, R. & Peracchi, A. A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep. 4, 850–854 (2003).

    CAS PubMed PubMed Central Google Scholar

  • Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).

    CAS PubMed Google Scholar

  • Phillips, R. S., Poteh, P., Krajcovic, D., Miller, K. A. & Hoover, T. R. Crystal structure of d-ornithine/d-lysine decarboxylase, a stereoinverting decarboxylase: implications for substrate specificity and stereospecificity of fold III decarboxylases. Biochemistry 58, 1038–1042 (2019).

    CAS PubMed Google Scholar

  • de Chiara, C. et al. d-Cycloserine destruction by alanine racemase and the limit of irreversible inhibition. Nat. Chem. Biol. 16, 686–694 (2020).

    PubMed PubMed Central Google Scholar

  • Li, Q. et al. Deciphering the biosynthetic origin of l-allo-isoleucine. J. Am. Chem. Soc. 138, 408–415 (2016).

    CAS PubMed Google Scholar

  • Barra, L. et al. β-NAD as a building block in natural product biosynthesis. Nature 600, 754–758 (2021).

    CAS PubMed Google Scholar

  • Phillips, R. S., Demidkina, T. V. & Faleev, N. G. Structure and mechanism of tryptophan indole-lyase and tyrosine phenol-lyase. Biochim. Biophys. Acta 1647, 167–172 (2003).

    CAS PubMed Google Scholar

  • Sato, D. & Nozaki, T. Methionine γ-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life 61, 1019–1028 (2009).

    CAS PubMed Google Scholar

  • Watkins-Dulaney, E., Straathof, S. & Arnold, F. Tryptophan synthase: biocatalyst extraordinaire. ChemBioChem 22, 5–16 (2021).

    CAS PubMed Google Scholar

  • Hai, Y., Chen, M., Huang, A. & Tang, Y. Biosynthesis of mycotoxin fusaric acid and application of a PLP-dependent enzyme for chemoenzymatic synthesis of substituted l-pipecolic acids. J. Am. Chem. Soc. 142, 19668–19677 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Cui, Z. et al. Pyridoxal-5′-phosphate-dependent alkyl transfer in nucleoside antibiotic biosynthesis. Nat. Chem. Biol. 16, 904–911 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Seebeck, F. P. & Hilvert, D. Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation. J. Am. Chem. Soc. 125, 10158–10159 (2003).

    CAS PubMed Google Scholar

  • Alexeev, D. et al. The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J. Mol. Biol. 284, 401–419 (1998).

    CAS PubMed Google Scholar

  • Hoffarth, E. R., Rothchild, K. W. & Ryan, K. S. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J. 287, 1403–1428 (2020).

    CAS PubMed Google Scholar

  • Johnson, L. N. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J. 6, 2274–2282 (1992).

    CAS PubMed Google Scholar

  • Eliot, A. C. & Kirsch, J. F. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415 (2004).

    CAS PubMed Google Scholar

  • Rocha, J. F., Pina, A. F., Sousa, S. F. & Cerqueira, N. M. F. S. A. PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: a structural and mechanistic perspective. Catal. Sci. Tech. 9, 4864–4876 (2019).

    CAS Google Scholar

  • Du, Y.-L. & Ryan, K. S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat. Prod. Rep. 36, 430–457 (2019).

    CAS PubMed Google Scholar

  • Ellis, J. M. et al. Biocatalytic synthesis of non-standard amino acids by a decarboxylative aldol reaction. Nat. Catal. 5, 136–143 (2022).

    CAS PubMed PubMed Central Google Scholar

  • Kimura, T., Vassilev, V. P., Shen, G.-J. & Wong, C.-H. Enzymatic synthesis of β-hydroxy-α-amino acids based on recombinant d- and l-threonine aldolases. J. Am. Chem. Soc. 119, 11734–11742 (1997).

    CAS Google Scholar

  • Percudani, R. & Peracchi, A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 10, 273 (2009).

    PubMed PubMed Central Google Scholar

  • Mannich, C. Eine Synthese von β-Ketonbasen. Arch. Pharm. 255, 261–276 (1917).

    CAS Google Scholar

  • Arend, M., Westermann, B. & Risch, N. Modern variants of the Mannich reaction. Angew. Chem. Int. Ed. 37, 1044–1070 (1998).

  • Schirch, V. & Szebenyi, D. M. Serine hydroxymethyltransferase revisited. Curr. Opin. Chem. Biol. 9, 482–487 (2005).

    CAS PubMed Google Scholar

  • Chen, J. et al. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction. Science 360, 1438–1442 (2018).

    CAS PubMed Google Scholar

  • Hamed, R. B. et al. Stereoselective C–C bond formation catalysed by engineered carboxymethylproline synthases. Nat. Chem. 3, 365–371 (2011).

    CAS PubMed Google Scholar

  • Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C–C bond formation. Nat. Rev. Chem. 4, 334–346 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Schmidt, N. G., Eger, E. & Kroutil, W. Building bridges: biocatalytic C–C-bond formation toward multifunctional products. ACS Catal. 6, 4286–4311 (2016).

    CAS PubMed PubMed Central Google Scholar

  • Scott, T. A. & Piel, J. The hidden enzymology of bacterial natural product biosynthesis. Nat. Rev. Chem. 3, 404–425 (2019).

    PubMed PubMed Central Google Scholar

  • Schardl, C. L., Grossman, R. B., Nagabhyru, P., Faulkner, J. R. & Mallik, U. P. Loline alkaloids: currencies of mutualism. Phytochemistry 68, 980–996 (2007).

    CAS PubMed Google Scholar

  • Cakmak, M., Mayer, P. & Trauner, D. An efficient synthesis of loline alkaloids. Nat. Chem. 3, 543–545 (2011).

    CAS PubMed Google Scholar

  • Spiering, M. J., Moon, C. D., Wilkinson, H. H. & Schardl, C. L. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 169, 1403–1414 (2005).

    CAS PubMed PubMed Central Google Scholar

  • Pan, J. et al. Installation of the ether bridge of lolines by the iron- and 2-oxoglutarate-dependent oxygenase, LolO: regio- and stereochemistry of sequential hydroxylation and oxacyclization reactions. Biochemistry 57, 2074–2083 (2018).

    CAS PubMed Google Scholar

  • Pan, J. et al. Evidence for modulation of oxygen rebound rate in control of outcome by iron(II)- and 2-oxoglutarate-dependent oxygenases. J. Am. Chem. Soc. 141, 15153–15165 (2019).

    CAS PubMed PubMed Central Google Scholar

  • Zhang, D. X., Stromberg, A. J., Spiering, M. J. & Schardl, C. L. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures. Fungal Genet Biol. 46, 517–530 (2009).

    CAS PubMed Google Scholar

  • Fleetwood, D. J., Fokin, M., Styles, K. A., Wickramage, A. S. & Saikia, S. Materials and methods for producing alkaloids. US patent WO2019123399A1 (2019).

  • Faulkner, J. R. et al. On the sequence of bond formation in loline alkaloid biosynthesis. ChemBioChem 7, 1078–1088 (2006).

    CAS PubMed Google Scholar

  • Houen, G. et al. Substrate specificity of the bovine serum amine oxidase and in situ characterisation of aminoaldehydes by NMR spectroscopy. Bioorg. Med. Chem. 13, 3783–3796 (2005).

    CAS PubMed Google Scholar

  • Slabu, I., Galman, J. L., Weise, N. J., Lloyd, R. C. & Turner, N. J. Putrescine transaminases for the synthesis of saturated nitrogen heterocycles from polyamines. ChemCatChem 8, 1038–1042 (2016).

    CAS Google Scholar

  • Schneider, G., Käck, H. & Lindqvist, Y. The manifold of vitamin B6 dependent enzymes. Structure 8, R1–R6 (2000).

    CAS PubMed Google Scholar

  • Taylor, J. L., Price, J. E. & Toney, M. D. Directed evolution of the substrate specificity of dialkylglycine decarboxylase. Biochim. Biophys. Acta 1854, 146–155 (2015).

    CAS PubMed Google Scholar

  • Komarov, I. V., Grigorenko, A. O., Turov, A. V. & Khilya, V. P. Conformationally rigid cyclic α-amino acids in the design of peptidomimetics, peptide models and biologically active compounds. Russ. Chem. Rev. 73, 785–810 (2004).

    CAS Google Scholar

  • Tanaka, M. Design and synthesis of chiral α,α-disubstituted amino acids and conformational study of their oligopeptides. Chem. Pharm. Bull. 55, 349–358 (2007).

  • Crossley, S. W. & Shenvi, R. A. A longitudinal study of alkaloid synthesis reveals functional group interconversions as bad actors. Chem. Rev. 115, 9465–9531 (2015).

    CAS PubMed Google Scholar

  • Michael, J. P. Simple indolizidine and quinolizidine alkaloids. Alkaloids Chem. Biol. 75, 1–498 (2016).

    CAS PubMed Google Scholar

  • Ramalingam, K., Lee, K. M., Woodard, R. W., Bleecker, A. B. & Kende, H. Stereochemical course of the reaction catalyzed by the pyridoxal phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate synthase. Proc. Natl Acad. Sci. USA 82, 7820–7824 (1985).

    CAS PubMed PubMed Central Google Scholar

  • Kim, S. & Park, S. Structural changes during cysteine desulfurase CsdA and sulfur acceptor CsdE interactions provide insight into the trans-persulfuration. J. Biol. Chem. 288, 27172–27180 (2013).

    CAS PubMed PubMed Central Google Scholar

  • Holm, L. Dali server: structural unification of protein families. Nucleic Acids Res. 50, W210–W215 (2022).

    CAS PubMed PubMed Central Google Scholar

  • Irani, S. et al. Snapshots of C–S cleavage in Egt2 reveals substrate specificity and reaction mechanism. Cell Chem. Biol. 25, 519–529.e4 (2018).

    CAS PubMed PubMed Central Google Scholar

  • Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Prim. 1, 46 (2021).

    CAS Google Scholar

  • Peterson, E. A. & Sober, H. A. Preparation of crystalline phosphorylated derivatives of vitamin B6. J. Am. Chem. Soc. 76, 169–175 (1954).

    CAS Google Scholar

  • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS PubMed Google Scholar

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS PubMed PubMed Central Google Scholar

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS PubMed PubMed Central Google Scholar

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS PubMed PubMed Central Google Scholar

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS PubMed PubMed Central Google Scholar

  • The PyMOL Molecular Graphics System, v. 2.1 (Schrödinger, 2018).

  • Grimme, S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J. Chem. Theory Comput. 15, 2847–2862 (2019).

    CAS PubMed Google Scholar

  • Frisch, M. J. et al. Gaussian 16, revision C.01 (2016).

  • Luchini, G., Alegre-Requena, J., Funes-Ardoiz, I. & Paton, R. GoodVibes: automated thermochemistry for heterogeneous computational chemistry data [version 1; peer review: 2 approved with reservations]. F1000Research 9, 291 (2020).

    Google Scholar

  • Trott, O., Olson & A, J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS PubMed PubMed Central Google Scholar

  • Case, D. A. et al. AMBER 2020 (Univ. of California, 2020).

  • Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    CAS PubMed PubMed Central Google Scholar

  • Gaudreault, F., Morency, L. P. & Najmanovich, R. J. NRGsuite: a PyMOL plugin to perform docking simulations in real time using FlexAID. Bioinformatics 31, 3856–3858 (2015).

    CAS PubMed PubMed Central Google Scholar

  • A pyridoxal 5′-phosphate-dependent Mannich cyclase (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Tyson Zemlak

    Last Updated:

    Views: 5520

    Rating: 4.2 / 5 (43 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Tyson Zemlak

    Birthday: 1992-03-17

    Address: Apt. 662 96191 Quigley Dam, Kubview, MA 42013

    Phone: +441678032891

    Job: Community-Services Orchestrator

    Hobby: Coffee roasting, Calligraphy, Metalworking, Fashion, Vehicle restoration, Shopping, Photography

    Introduction: My name is Tyson Zemlak, I am a excited, light, sparkling, super, open, fair, magnificent person who loves writing and wants to share my knowledge and understanding with you.